PYME.recipes.pointcloud module¶
- class PYME.recipes.pointcloud.DelaunayCircumcentres(parent=None, invalidate_parent=True, **kwargs)¶
Bases:
ModuleBase
- append_original_locs = <PYME.misc.mock_traits.CStr object>¶
- execute(namespace)¶
takes a namespace (a dictionary like object) from which it reads its inputs and into which it writes outputs
NOTE: This was previously the function to define / override to make a module work. To support automatic metadata propagation and reduce the ammount of boiler plate, new modules should override the run() method instead.
- input = <PYME.recipes.traits.Input object>¶
- output = <PYME.recipes.traits.Output object>¶
- class PYME.recipes.pointcloud.DelaunayTesselation(parent=None, invalidate_parent=True, **kwargs)¶
Bases:
ModuleBase
- execute(namespace)¶
takes a namespace (a dictionary like object) from which it reads its inputs and into which it writes outputs
NOTE: This was previously the function to define / override to make a module work. To support automatic metadata propagation and reduce the ammount of boiler plate, new modules should override the run() method instead.
- input = <PYME.recipes.traits.Input object>¶
- output = <PYME.recipes.traits.Output object>¶
- three_d = <PYME.misc.mock_traits.CStr object>¶
- class PYME.recipes.pointcloud.GaussianMixtureModel(parent=None, invalidate_parent=True, **kwargs)¶
Bases:
ModuleBase
Fit a Gaussian Mixture to a pointcloud, predicting component membership for each input point.
- Parameters
- input_points: PYME.IO.tabular
points to fit. Currently hardcoded to use x, y, and z keys.
- n: Int
number of Gaussian components in the model for optimization mode n and bayesian, or maxinum number of components for bic
- mode: Enum
optimization on the number of components. For n and bayesian the GMM uses exactly n components, while for bic it is the maximum number of components used, with the optimum Bayesian Information Criterion used to select the best model.
- covariance: Enum
type of covariance to use in the model
- label_key: str
name of membership/label key in output datasource, ‘gmm_label’ by default
- output_labeled: PYME.IO.tabular
input source with additional column indicating predicted component membership of each point
Notes
Directly implements or closely wraps scikit-learn mixture.GaussianMixture and mixture.BayesianGaussianMixture. See sklearn documentation for more information.
- covariance = <PYME.misc.mock_traits.CStr object>¶
- execute(namespace)¶
takes a namespace (a dictionary like object) from which it reads its inputs and into which it writes outputs
NOTE: This was previously the function to define / override to make a module work. To support automatic metadata propagation and reduce the ammount of boiler plate, new modules should override the run() method instead.
- init_params = <PYME.misc.mock_traits.CStr object>¶
- input_points = <PYME.recipes.traits.Input object>¶
- label_key = <PYME.misc.mock_traits.CStr object>¶
- max_iter = <PYME.misc.mock_traits.CStr object>¶
- mode = <PYME.misc.mock_traits.CStr object>¶
- n = <PYME.misc.mock_traits.CStr object>¶
- output_labeled = <PYME.recipes.traits.Output object>¶
- class PYME.recipes.pointcloud.LocalPointDensity(parent=None, invalidate_parent=True, **kwargs)¶
Bases:
ModuleBase
Estimate the local density around a localization by fitting a scaling function to the number of Neigbours vs distance. The expected scaling function for a uniform density is used ($N propto r^2$ for 2D, $Npropto r^3$ for 3D.
TODO - find the correct scaling factors (probably involving pi) to convert this to $locs/um^{N_{dim}}$
- execute(namespace)¶
takes a namespace (a dictionary like object) from which it reads its inputs and into which it writes outputs
NOTE: This was previously the function to define / override to make a module work. To support automatic metadata propagation and reduce the ammount of boiler plate, new modules should override the run() method instead.
- input = <PYME.recipes.traits.Input object>¶
- input_sample_locations = <PYME.recipes.traits.Input object>¶
- n_nearest_neighbours = <PYME.misc.mock_traits.CStr object>¶
- output = <PYME.recipes.traits.Output object>¶
- three_d = <PYME.misc.mock_traits.CStr object>¶
- class PYME.recipes.pointcloud.Octree(parent=None, invalidate_parent=True, **kwargs)¶
Bases:
ModuleBase
- execute(namespace)¶
takes a namespace (a dictionary like object) from which it reads its inputs and into which it writes outputs
NOTE: This was previously the function to define / override to make a module work. To support automatic metadata propagation and reduce the ammount of boiler plate, new modules should override the run() method instead.
- input_localizations = <PYME.recipes.traits.Input object>¶
- max_depth = <PYME.misc.mock_traits.CStr object>¶
- minimum_pixel_size = <PYME.misc.mock_traits.Float object>¶
- output_octree = <PYME.recipes.traits.Output object>¶
- samples_per_node = <PYME.misc.mock_traits.CStr object>¶
- class PYME.recipes.pointcloud.Ripleys(parent=None, invalidate_parent=True, **kwargs)¶
Bases:
ModuleBase
Ripley’s K-function, and alternate normalizations, for examining clustering and dispersion of points within aregion R, where R is defined by a mask (2D or 3D) of the data.
- inputPositionstraits.Input
Localization data source to analyze as PYME.IO.tabular types
- inputMasktraits.Input
PYME.IO.image.ImageStack mask defining the localization bounding region
- outputNametraits.Output
Name of resulting PYME.IO.tabular.DictSource data ource
- normalizationtraits.Enum
Ripley’s normalization type. See M. A. Kiskowski, J. F. Hancock, and A. K. Kenworthy, “On the use of Ripley’s K-function and its derivatives to analyze domain size,” Biophys. J., vol. 97, no. 4, pp. 1095-1103, 2009.
- nbinstraits.Int
Number of bins over which to analyze K-function
- binSizetraits.Float
K-function bin size in nm
- samplingtraits.Float
spacing (in nm) of samples from mask / region.
- statisticstraits.Bool
Monte-Carlo sampling of the structure to determine clustering/ dispersion probability.
- nsimint
Number of Monte-Carlo simulations to run. More simulations = more statistical power. Used if statistics == True.
- significancefloat
Desired significance of
- threadedbool
Calculate pairwise distances using multithreading (faster)
- three_dbool
Analyze localizations in 2D or 3D. Requires correct dimensionality of input localizations and mask.
- binSize = <PYME.misc.mock_traits.Float object>¶
- execute(namespace)¶
takes a namespace (a dictionary like object) from which it reads its inputs and into which it writes outputs
NOTE: This was previously the function to define / override to make a module work. To support automatic metadata propagation and reduce the ammount of boiler plate, new modules should override the run() method instead.
- inputMask = <PYME.recipes.traits.Input object>¶
- inputPositions = <PYME.recipes.traits.Input object>¶
- nbins = <PYME.misc.mock_traits.CStr object>¶
- normalization = <PYME.misc.mock_traits.CStr object>¶
- nsim = <PYME.misc.mock_traits.CStr object>¶
- outputName = <PYME.recipes.traits.Output object>¶
- sampling = <PYME.misc.mock_traits.Float object>¶
- significance = <PYME.misc.mock_traits.Float object>¶
- statistics = <PYME.misc.mock_traits.CStr object>¶
- threaded = <PYME.misc.mock_traits.CStr object>¶
- three_d = <PYME.misc.mock_traits.CStr object>¶
- class PYME.recipes.pointcloud.Tesselation(point_data, three_d=True)¶
Bases:
TabularBase
,TrianglesBase
A wrapper class which encapsulates both a tesselation and the underlying point data source
FIXME - move somewhere more sensible
- circumcentres()¶
- property face_normals¶
- property faces¶
- keys()¶
returns the names of possible vertex attributes
- property vertex_normals¶