PYME.localization.cModels.gauss_app module¶
Fast gaussian models)
- PYME.localization.cModels.gauss_app.NRFilter()¶
Perform a filter on an X, Y, I dataset using an R^2 dependant LUT
- PYME.localization.cModels.gauss_app.genGauss()¶
Generate a (fast) Gaussian. . Arguments are: ‘X’, ‘Y’, ‘A’=1,’x0’=0, ‘y0’=0,sigma=0,b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.genGauss3D()¶
Generate a (fast) 3D Gaussian. . Arguments are: ‘X’, ‘Y’, ‘Z’, ‘A’=1,’x0’=0, ‘y0’=0, ‘z0’=0,sigma=0, sigma_z=1, b=0
- PYME.localization.cModels.gauss_app.genGaussA()¶
Generate a (fast) astigmatic Gaussian. . Arguments are: ‘X’, ‘Y’, ‘A’=1,’x0’=0, ‘y0’=0,sigma_x=1, sigma_y = 1,b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.genGaussInArray()¶
Generate a Gaussian in pre-allocated memory. . Arguments are: out, X, Y, A=1,x0=0, y0=0,sigma=0, b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.genGaussJac()¶
Generate jacobian for Gaussian. . Arguments are: ‘X’, ‘Y’, ‘A’=1,’x0’=0, ‘y0’=0,sigma=0,b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.genGaussJacW()¶
Generate jacobian for a weighted Gaussian. . Arguments are: ‘X’, ‘Y’, ‘W’,’A’=1,’x0’=0, ‘y0’=0,sigma=0,b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.genMultiGauss()¶
Generate multiple Gaussians. . Arguments are: ‘X’, ‘Y’, ‘P’,sigma=1
- PYME.localization.cModels.gauss_app.genMultiGaussJac()¶
Generate multiple Gaussians. . Arguments are: ‘X’, ‘Y’, ‘P’,sigma=1
- PYME.localization.cModels.gauss_app.genSplitGaussInArray()¶
Generate a double Gaussian in pre-allocated memory. . Arguments are: out, X, Y, X1, Y1, A=1, A1=1,x0=0, y0=0,sigma=0, b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.genSplitGaussInArrayPVec()¶
Generate a double Gaussian in pre-allocated memory. . Arguments are: out, X, Y, X1, Y1, A=1, A1=1,x0=0, y0=0,sigma=0, b=0,b_x=0,b_y=0
- PYME.localization.cModels.gauss_app.splitGaussWeightedMisfit()¶
Generate a double Gaussian in pre-allocated memory. . Arguments are: out, X, Y, X1, Y1, A=1, A1=1,x0=0, y0=0,sigma=0, b=0,b_x=0,b_y=0