PYME.localization.FitFactories.LatGaussFitFR module¶
- PYME.localization.FitFactories.LatGaussFitFR.FitFactory¶
alias of
GaussianFitFactory
- PYME.localization.FitFactories.LatGaussFitFR.FitResult(fitResults, metadata, slicesUsed=None, resultCode=-1, fitErr=None, background=0, nchi2=-1)¶
- class PYME.localization.FitFactories.LatGaussFitFR.GaussianFitFactory(data, metadata, fitfcn=<function f_gauss2d>, background=None, noiseSigma=None, **kwargs)¶
Bases:
FFBase
Create a fit factory which will operate on image data (data), potentially using voxel sizes etc contained in metadata.
- FromPoint(x, y, z=None, roiHalfSize=5, axialHalfSize=15)¶
This should be overridden in derived classes to actually do the fitting. The function which gets implemented should return a numpy record array, of the dtype defined in the module level FitResultsDType variable (the calling function uses FitResultsDType to pre-allocate an array for the results)
- classmethod evalModel(params, md, x=0, y=0, roiHalfSize=5)¶
Evaluate the model that this factory fits - given metadata and fitted parameters.
Used for fit visualisation
- PYME.localization.FitFactories.LatGaussFitFR.GaussianFitResultR(fitResults, metadata, slicesUsed=None, resultCode=-1, fitErr=None, background=0, nchi2=-1)¶
- PYME.localization.FitFactories.LatGaussFitFR.f_J_gauss2d(p, X, Y)¶
generate the jacobian for a 2d Gaussian - for use with _fithelpers.weightedJacF
- PYME.localization.FitFactories.LatGaussFitFR.f_gauss2d(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y]
- PYME.localization.FitFactories.LatGaussFitFR.f_gauss2dF(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y] - uses fast exponential approx
- PYME.localization.FitFactories.LatGaussFitFR.f_gauss2dSlow(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y]
- PYME.localization.FitFactories.LatGaussFitFR.f_gauss2d_no_bg(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y]
- PYME.localization.FitFactories.LatGaussFitFR.f_j_gauss2d(p, func, d, w, X, Y)¶
generate the jacobian for a 2d Gaussian
- PYME.localization.FitFactories.LatGaussFitFR.genFitImage(fitResults, metadata)¶