PYME.localization.FitFactories.GaussMultifitR module¶
- PYME.localization.FitFactories.GaussMultifitR.FitFactory¶
alias of
GaussianFitFactory
- PYME.localization.FitFactories.GaussMultifitR.FitResult(fitResults, metadata, resultCode=-1, fitErr=None)¶
- class PYME.localization.FitFactories.GaussMultifitR.GaussianFitFactory(data, metadata, fitfcn=<function f_multiGauss>, background=None, **kwargs)¶
Bases:
object
Create a fit factory which will operate on image data (data), potentially using voxel sizes etc contained in metadata.
- FindAndFit(threshold=2)¶
- X = None¶
- Y = None¶
- classmethod evalModel(params, md, x=0, y=0, roiHalfSize=5)¶
- PYME.localization.FitFactories.GaussMultifitR.GaussianFitResultR(fitResults, metadata, resultCode=-1, fitErr=None)¶
- PYME.localization.FitFactories.GaussMultifitR.f_J_gauss2d(p, X, Y)¶
generate the jacobian for a 2d Gaussian - for use with _fithelpers.weightedJacF
- PYME.localization.FitFactories.GaussMultifitR.f_gauss2d(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y]
- PYME.localization.FitFactories.GaussMultifitR.f_gauss2dF(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y] - uses fast exponential approx
- PYME.localization.FitFactories.GaussMultifitR.f_gauss2dSlow(p, X, Y)¶
2D Gaussian model function with linear background - parameter vector [A, x0, y0, sigma, background, lin_x, lin_y]
- PYME.localization.FitFactories.GaussMultifitR.f_j_gauss2d(p, func, d, w, X, Y)¶
generate the jacobian for a 2d Gaussian
- PYME.localization.FitFactories.GaussMultifitR.f_multiGauss(p, X, Y, s)¶
- PYME.localization.FitFactories.GaussMultifitR.f_multiGaussJ(p, X, Y, s)¶
- PYME.localization.FitFactories.GaussMultifitR.f_multiGaussS(p, X, Y, s)¶