PYME.Deconv.richardsonLucy module¶
- class PYME.Deconv.richardsonLucy.RichardsonLucyDeconvolution¶
Bases:
object
Deconvolution class, implementing a variant of the Richardson-Lucy algorithm.
Derived classed should additionally define the following methods: AFunc - the forward mapping (computes Af) AHFunc - conjugate transpose of forward mapping (computes ar{A}^T f) LFunc - the likelihood function LHFunc - conj. transpose of likelihood function
see dec_conv for an implementation of conventional image deconvolution with a measured, spatially invariant PSF
- deconv(data, lamb, num_iters=10, weights=1, bg=0)¶
This is what you actually call to do the deconvolution. parameters are:
data - the raw data lamb - the regularisation parameter (ignored - kept for compatibility with ICTM) num_iters - number of iterations (note that the convergence is fast when
compared to many algorithms - e.g Richardson-Lucy - and the default of 10 will usually already give a reasonable result)
- deconvp(args)¶
convenience function for deconvolving in parallel using processing.Pool.map
- startGuess(data)¶
starting guess for deconvolution - can be overridden in derived classes but the data itself is usually a pretty good guess.
- class PYME.Deconv.richardsonLucy.dec_conv(*args, **kwargs)¶
- class PYME.Deconv.richardsonLucy.dec_conv_slow(*args, **kwargs)¶
- class PYME.Deconv.richardsonLucy.rlbead(*args, **kwargs)¶
Bases:
RichardsonLucyDeconvolution
,SpatialConvolutionMapping